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Abstract. We study the non-compact version of the U(1) gauge-Higgs model in three dimensions for
mH = 30 GeV. We found that, using this formulation, rather modest lattices approach quite well the
infinite volume behaviour.The phase transition is first order, as expected for this Higgs mass. The latent
heat (in units of T 4

cr) is compatible with the predictions of the two-loop effective potential; it is an order
of magnitude less than the corresponding SU(2) value. The transition temperature and 〈ϕ∗ϕ〉 in units of
the critical temperature are also compatible with the perturbative results.

1 Introduction

The main reason for the study of the three-dimensional
gauge-Higgs system is its relation to the full SU(2)×U(1)
Standard model at finite temperature. The latter has been
studied extensively in recent years in connection with the
scenario of baryon violation at the electroweak scale dur-
ing the evolution of the Early Universe.

It is well known that perturbation theory is not reliable
for the study of such models, because of severe infrared
divergencies. One promising approach has been to reduce
the four-dimensional model at finite temperature to an ef-
fective model in three dimensions. This can be done if the
couplings are small and the temperature is much larger
than any other mass scale in the theory [1–3]. The pa-
rameters of the reduced theory are related to the ones of
the original model through perturbation theory. The re-
duced theory has some advantages over the original one
from the computational point of view [5–7]. It is super-
renormalizable and yields transparent relations between
the (dimensionful) continuous parameters and the lattice
ones. Moreover, the number of mass scales is drastically
reduced: (a) the scale T , present in four dimensions is
evidently absent, (b) one may also integrate out the tem-
poral component A0 of the gauge field, so its mass scale
gT also disappears. Thus there are two mass scales less
and this reduces substantially the computer time needed
to get reliable results.

The model that has already been studied along these
lines [5–8] has been based on SU(2) with one complex
Higgs doublet. (For work on the same model in asymmet-
ric four-dimensional lattices, see [15].) The issues studied
have been the order and the characteristics (critical tem-
perature, latent heat, surface tension, correlation lengths)
of the phase transition, as well as the reliability of pertur-
bation theory deep in the broken phase for several values
of the Higgs mass. It is interesting to see how the above
findings are affected by two characteristics of the study:

the compactness of the gauge group and its non-abelian
nature.

The abelian Higgs model has already been studied
both in three and four dimensions [14].The compact U(1)
model has been studied on the lattice in [10, 11].An in-
teresting aspect of the role of the abelian character of the
model would be to compare its latent heat against the one
of the corresponding SU(2) theory.

We have chosen to concentrate on the non-compact
model. To be exact, only the kinetic term for the gauge
field is written in the non-compact form; for the kinetic
term of the scalar field we use the compact formulation.
This formalism has several advantages:

– It follows closer the continuum theory, so it should be
easier to approach the continuum limit.

– Our results show that with relatively small volumes
one gets quite close to the thermodynamic limit.

– The spurious U(1) monopoles, present in the compact
formulation will not be present any more.

– The non-compact version is closer to the exact lattice
form of the Landau-Ginzburg theory of superconduc-
tivity. The variable x of our model, defined in the text
below, corresponds to κ2 of the above theory. We recall
that the the phase transition is of first order for type
I superconductors (κ < 1√

2
), corresponding to small

Higgs mass; the converse holds for type II supercon-
ductors.

We have concentrated on the phase transition line.
We have chosen to fix the Higgs mass to a fixed value
(30 GeV), g to 1/3, mW to 80.6 GeV and study the char-
acteristics of the phase transition.
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2 Reduction of the four–dimensional theory
to three dimensions

The Lagrangian for the U(1) gauge–Higgs model in four
dimensions is well known:

L4D =
1
4
FµνFµν + |Dµϕ|2 + m2ϕ∗ϕ + λ (ϕ∗ϕ)2 (1)

The action for this model at finite temperature is:

S [Aµ(τ,x), ϕ(τ,x)]

=
∫ β

0
dτ

∫
d3x

[
1
4
FµνFµν

+ |Dµϕ|2 + m2ϕ∗ϕ + λ (ϕ∗ϕ)2
]

, (2)

where β = 1/T .
If the action is expressed in terms of Fourier compo-

nents, the mass terms are of the type:

[(2πnT )2 + (k)2]|Aµ(n,k)|2 (3)

[(2πnT )2 + (k)2]|ϕ(n,k)|2, (4)

where n = −∞, . . . ,∞.
At high temperatures T and energy scales less than

2πT the non–static modes Aµ(n 6= 0,k), ϕ(n 6= 0,k)
are thus suppressed by the factor (2πnT )2 relative to the
static Aµ(n = 0,k) and ϕ(n = 0,k) modes. The method
of dimensional reduction consists in integrating out the
non–static modes in the action and deriving an effective
action [2, 3].

An important remark is that the mass of the adjoint
Higgs field is of order gT , which is large compared to g2T ,
the typical scale of the theory. Thus one can go on one step
further and integrate it out using perturbation theory [5-
7].

The effective action may then be written in the form:

S3D eff [Ai(x), ϕ3(x)] =
∫

d3x

[
1
4
FijFij + |Diϕ3|2

+ m2
3ϕ

∗
3ϕ3 + λ3 (ϕ∗

3ϕ3)
2
]

(5)

The index 3 in (5) denotes the 3D character of the theory.
The relations between the 4D and 3D parameters are (up
to 2 loops):

g2
3 = g2(µ)T , (6)

λ3 = T

(
λ(µ) +

2
(4π)2

g4
)

− g4
3

8πmD
, (7)

m2
3 (µ3) =

1
4
g2
3T +

1
3

(
λ3 +

g4
3

8πmD

)
T

+
g2
3

16π2

(
−8

9
g2
3 +

2
3

(
λ3 +

g4
3

8πmD

))
− 1

2
m2

H

+
f2m

16π2 log
(

3T

µ3
+ c

)
− g2

3mD

4π

− g4
3

8π2

(
log

µ3

2mD
+

1
2

)
, (8)

m2
D =

1
3
g2(µ)T 2 . (9)

We note that f2m = −4g4
3 + 8λ3g

2
3 − 8λ2

3 and c =
−0.348725 [5–7].

The couplings g2
3 , λ3 of the three-dimensional theory

are renormalization group invariant because the theory
is supernormalisable. The mass parameter m2

3 contains a
linear and a logarithmic divergence.

It is convenient to use the new set of parameters (g2
3 ,

x, y) rather than the set
(
g2
3 , λ3, m

2
3
)
. x, y are defined by

[8]:

x =
λ3

g2
3

(10)

y =
m2

3
(
g2
3
)

g4
3

(11)

It is evident that x is just proportional to the ratio of the
squares of the scalar and vector masses; on the other hand,
y is related to the temperature. The parameters x, y can
be expressed in terms of the four-dimensional parameters
as follows [10, 11]:

x =
1
2

m2
H

m2
W

−
√

3 g

8π
(12)

y =
1

4g2 +
1

3g2

(
x +

√
3 g

8π

)

+
1

16π2

(
−8

9
+

2
3

(
x +

√
3 g

8π

))
− 1

4π
√

3 g

− 1
8π2

(
log

3
√

3
2g

+ c +
1
2

)
− m2

H

2g4T 2

+
1

16π2

(−4 + 8x − 8x2)(log
3
g2 + c

)
(13)

3 The lattice action

Discretizing the continuum action (5) we get:

S = βg

∑
x

∑
0<i<j

F 2
ij

+βh

∑
x

∑
0<i

[
ϕ∗(x)ϕ(x) − ϕ∗(x)Ui(x)ϕ(x + î)

]
(14)

+
∑

x

[(1 − 2βR − 3βh)ϕ∗(x)ϕ(x) + βR(ϕ∗(x)ϕ(x))2] ,

where Fij = ∆f
i Aj(x) − ∆f

j Ai(x), Ui(x) = eiAi(x).
Notice that we use the non–compact version for the

gauge field as explained in the introduction. The näive
continuum limit corresponds to the values: βg = ∞, βh =
1
3 , βR = 0.
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The lattice parameters and the (three-dimensional)
continuum ones are related as follows [9]:

βg =
1

ag2
3

(15)

βR =
xβ2

h

4βg
(16)

2β2
g

(
1
βh

− 3 − 2βR

βh

)
= y − (2 + 4x)

Σβg

4π

− 1
16π2 [

(−4 + 8x − 8x2) (17)

×(log 6βg + 0.09) − 1.1 + 4.6x] .

We note that Σ = 3.176 at the scale µ3 = g2
3 .

4 The algorithm

We used the Metropolis algorithm for the updating of both
the gauge and the Higgs field. It is known that the scalar
fields have much longer autocorrelation times than the
gauge fields. Thus, special care must be taken to increase
the efficiency of the updating for the Higgs field. We made
the following additions to the Metropolis updating proce-
dure [8]:

a) Global radial update: We update the radial part of
the Higgs field by multiplying it by the same factor at
all sites: R(x) → eξR(x), where ξ ∈ [−ε, ε] is randomly
chosen. The quantity ε is adjusted such that the accep-
tance rate is kept between 0.6 and 0.7. The probability for
the updating is P (ξ) = min{1, exp(2V ξ − ∆S(ξ))} where
∆S(ξ) is the change in action, while the 2V ξ term comes
from the change in the measure.

b) Higgs field overrelaxation: We write the Higgs po-
tential at x in the form:

V (ϕ(x)) = −a · F + R2(x) + βR

(
R2(x) − 1

)2
(18)

where

a ≡
(

R(x) cos χ(x)
R(x) sinχ(x)

)
,

F ≡
(

βh

∑
i R(x + î) cos(χ(x + î) + θ(x))

βh

∑
i R(x + î) sin(χ(x + î) + θ(x))

)
.

We can perform the change of variables: (a,F) →
(X, F,Y), where

F ≡ |F|, f ≡ F√
F 2

1 + F 2
2

, X ≡ a · f , Y ≡ a − Xf . (19)

The potential may be rewritten in terms of the new
variables:

V̄ (X, F,Y) = −XF + (1 + 2βR(Y2 − 1))X2

+Y2(1 − 2βR) + βR

(
X4 + Y4) . (20)

The updating of Y is done simply by the reflection:

Y → Y′ = −Y. (21)

The updating of X is performed by solving the equa-
tion: (

∂V̄ (X ′, F ′,Y′)
∂X ′

)−1

exp(−V̄ (X ′, F ′,Y′))

=
(

∂V̄ (X, F,Y)
∂X

)−1

exp(−V̄ (X, F,Y)) . (22)

The change X → X ′ is accepted with probability:
P (X ′) = min{P0, 1}, where P0 ≡ ∂V̄ (X,F,Y)

∂X /∂V̄ (X′,F ′,Y′)
∂X′ .

5 Results

For our Monte–Carlo simulations we used cubic lattices
with volumes V = 123, 163, 243. For each volume we
performed 60 000 to 110 000 thermalization sweeps and
70 000 to 120 000 measurements. We have set the value of
x equal to 0.0463. According to the relation (12), using
mW = 80.6 GeV and g = 1

3 , this value of x corresponds
to a Higgs field mass mH = 30 GeV. We used two values
for βg, namely βg = 4 and βg = 8. For each value of βh

we use the relation (16) to determine the corresponding
βR. This value of x has been used in references [10, 11] in
the study of the compact U(1) model, so we use the same
value to facilitate comparison. The two models should be
close for large values of βg, where the compact formula-
tion probably approaches the non-compact one. The phase
transition is expected to be of first order, since the mass
of the scalar field is safely low.

We used four quantities to locate the phase transition
points:

1. The distribution N(Elink) of Elink.
2. The susceptibility of Elink ≡ 1

3V

∑
x,i Ω∗(x)Ui(x)

Ω(x+ i) (we have set ϕ(x) ≡ R(x)eiχ(x) ≡ R(x)Ω(x)):

S(Elink) ≡ V (〈(Elink)2〉 − 〈Elink〉2) .

3. The susceptibility of R2 ≡ 1
V

∑
x R2(x) :

S(R2) ≡ V (〈(R2)2〉 − 〈R2〉2) .

4. The Binder cumulant of Elink:

C(Elink) = 1 − 〈(Elink)4〉
3〈(Elink)2〉2 .

We have searched for the (pseudocritical) βh values
yielding (a) equal heights of the two peaks of the distribu-
tion N(Elink), (b) the maxima of the quantities S(Elink),
S(R2) and (c) the minima of the cumulant C(Elink). Of
course, the values β∗

h(A, V ) found using each of the above
four quantities, depend on the specific quantity (denoted
by A) which has been employed, as well as on the volume
V. While searching, we have made use of the Ferrenberg-
Swendsen reweighting technique [4] to find the pseudocrit-
ical βh for the volume 243.

In Fig. 1 we show an example of the distribution of
Elink in a 163 lattice for βg = 8 and three values of βh :
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Fig. 2. Susceptibility of Elink

the pseudocritical one (0.337000), one somewhat smaller
and one somewhat larger than this value. This is just to il-
lustrate the way in which the equal height criterion for the
critical point has worked. It is clear from the figure that
the pseudocritical βh yields two maxima of equal height in
the distribution. For the “small” βh the peak in the region
of small values of Elink is more pronounced, while for the
“large” βh it is the other way around. The picture of the
two well separated peaks at criticality is the signature of
a first order phase transition; the two peaks correspond to
the two coexisting metastable states.

In Figs. 2 and 3 we depict the behaviour of the sus-
ceptibilities S(Elink) and S(R2) for βg = 4 versus βh for
three lattice volumes. We have fitted curves through the
data and show them in the figures; for the 163 and 243

lattice volumes we also give the actual measurements. It
is evident that the curves represent the data quite nicely.
To calculate the error bars we first found the integrated
autocorrelation times τint(A) for the relevant quantities A
and constructed samples of data separated by a number of
steps greater than τint(A). The errors have been calculated
by the Jackknife method, using the samples constructed
according to the procedure just described. We observe that
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the peak values for the susceptibilities increase almost lin-
early with the volume in both cases, which is evidence for
a first order phase transition. In Fig. 4 we depict the be-
haviour of the Binder cumulant C(Elink) at βg = 8 for
three lattice sizes. We again show the real measurements
for 163 and 243 only and just give the fitted curves for
123. The error bars have been calculated by the Jackknife
method [13], in the same way as in the case of the sus-
ceptibilities. The volume dependence of the cumulants is
again characteristic of a first order phase transition.

The use of finite lattices is the reason why the β∗
h(A, V )

values that we have found employing the various criteria
are slightly different. Thus, one should extrapolate these

values to infinite volume. We have adopted the ansatz:

β∗
h(A, V ) = βcr

h (∞) +
c(A)
V

,

The constant c(A) is expected to depend on the quantity
A, while the extrapolated value βcr

h (∞) should not depend
on A; that is, the infinite volume extrapolation for the
critical point should not depend on the quantity used.

Figures 5 and 6 deal with the extrapolation to infinite
volume for βg = 4 and βg = 8 respectively. They contain
the data for the pseudocritical β∗

h(A, V ) values obtained
from the various quantities A versus the inverse lattice
volume, along with the linear fits to the data.The error
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bars in βh have been found from the statistical error of
the values of the quantities A at the critical point. We
note in passing that, at finite volumes, the smallest pseu-
docritical values are given by the cumulant of Elink; then
follow, in ascending order, the values given from the equal
height, the susceptibility of Elink and the susceptibility of
R2.This holds for both values of βg. One may also observe
that the infinite volume extrapolation is almost indepen-
dent from the specific quantity used: the differences at the
point 1

V = 0 between the various extrapolated critical val-
ues are less than 10−5. To be specific, the critical values
lie in the interval (0.340295, 0.340298) for βg = 4 and in
(0.336932, 0.336940) for βg = 8. In reference [10], treat-

ing the compact U(1) model, the best pseudocritical value
correesponding to our results has been obtained for βg = 8
for a 323 lattice. From the relevant figure one may read
out a pseudocritical value about 0.3370, a result consistent
with ours. These results suggest that the non-compact for-
mulation allows one to obtain similar results to the ones
of the compact formulation in a quite economical way.

The next quantity we are going to deal with is the crit-
ical temperature. It may be determined by noting that, for
each βg, the quantity βcr

h (∞) yields ycr through (16, 17);
then (13) gives Tcr. The results are to be found in Table 1.
We mention that in reference [8] the critical temperature
for the SU(2) model at βg = 8 and mH = 35 GeV has
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Table 1.

βg Tcr L/T 4
cr 〈ϕ∗ϕ〉/Tcr

4 131.50(3) 0.0135(4) 0.255(6)
8 131.18(14) 0.0172(6) 0.308(10)
pert. 132.64 0.0150 0.285

been found 94.181 GeV. No lattice result is reported for
this quantity in the paper [11] on compact U(1), but there
is the result 148.83 GeV at mH = 35 GeV from the per-
turbative effective potential. We will say more about this
later on, but we remark at this point that this value is
quite close to ours.

Having found the critical temperature we estimated
the latent heat, that is the energy released in the transi-
tion. We have used the formula [8, 9]:

L

T 4
cr

=
1
2

M2
H

T 3
cr

g2
3βcr

h βg∆〈R2〉. (23)

We note that g2
3 = g2Tcr. The quantity ∆〈R2〉 is the

difference of the R2 expectation values between the phases.
We have measured the values of ∆〈R2〉 from the R2 distri-
butions for each lattice volume at the three different pseu-
docritical values of β∗

h(A, V ) [12] the quantities A being
the susceptibilities of Elink and R2 and the equal height
signal of N(Elink). Figures 7 and 8 show these sets of three
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measurements versus the inverse volume of the lattice for
the cases βg = 4 and βg = 8. The error bars are due to
the uncertainty of each pseudocritical value, as well as to
statistical dispersion; they turn out to be rather big, espe-
cially for the smallest volume. The final values of ∆〈R2〉,
which have been used for the calculation of L

T 4
cr

have been
found from a linear fit of these data with 1

V . The conver-
gence of the three straight lines to a common value in the
limit of infinite volume is fairly good. The results for the
quantity L

T 4
cr

can be found in Table 1. The corresponding
results for the SU(2) case at mH = 35 GeV have been re-
ported to be 0.180 ± 0.001 in [12] and 0.256 ± 0.008 in [8].
The former result has been obtained for βg = 12, while for
the latter an extrapolation to βg = ∞ has been done. We
observe that our values of this quantity for U(1) are less
than the one tenth of the values for SU(2). This permits
one to be sure that the U(1) part of the Standard Model
gauge group plays only a secondary role in the scenario of
the Electroweak Phase Transition. The relative factor of
ten is so big, that this conclusion cannot be spoiled by the
rather large errors.

For the (3-dimensional) lattice quantity 〈ϕ∗ϕ〉/Tcr, also
appearing in Table 1, it is important that one subtracts
the “infinities” from the lattice results. The relevant for-
mula reads [9]:

〈ϕ∗ϕ〉 =
1
2
βhβgg

2
3〈R2〉 − g2

3βgΣ

4π

− g2
3

8π2

[
log 6βg + ζ +

Σ2

4
− δ

]
,

where Σ = 3.176, ζ = 0.09 and δ = 1.94.
One may use the U(1) effective potential [5] to deter-

mine the critical temperature Tcr, as well as the quantity
〈ϕ∗ϕ〉/Tcr and L

T 4
cr

and compare with the corresponding

quantities from the lattice. (We note that the critical tem-
perature is defined in perturbation theory by the equality
of the two minima of the potential.) The perturbative pre-
dictions are also displayed in Table 1.

Figure 9 depicts the two-loop effective potential ver-
sus the four-dimensional scalar field (a) for the critical
temperature Tcr,pert, and (b) for two other neighbouring
temperatures, one corresponding to the symmetric phase
and the other to the broken phase.

In principle one should perform the extrapolation to
large values of βg. However one is not sure about the exact
βg dependence of the various quantities, so we postpone
this until we get results for even bigger βg.

We observe that the lattice Tcr is smaller than the
prediction from perturbation theory and decreases with
βg (in agreement with the SU(2) results for small mH

[8]). The other two quantities that we measured, namely
L

T 4
cr

and 〈ϕ∗ϕ〉/Tcr, increase with βg and their values are
compatible with the perturbative ones.
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